
Analysis

Labeling energy cost on light bulbs lowers implicit discount rates

Jihoon Min a, Inês L. Azevedo a,⁎, Jeremy Michalek a,b, Wändi Bruine de Bruin a,c

a Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, United States
b Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, United States
c Leeds University Business School, The University of Leeds, Leeds, LS2 9JT, United Kingdom

a b s t r a c ta r t i c l e i n f o

Article history:
Received 18 October 2012
Received in revised form 17 October 2013
Accepted 24 October 2013
Available online xxxx

Keywords:
Energy efficient lighting
Implicit discount rate
Consumer preference
Choice experiment
Discrete choice analysis
Conjoint analysis

Lighting accounts for nearly 20% of overall U.S. electricity consumption and 18% of U.S. residential electricity
consumption. A transition to alternative energy-efficient technologies could reduce this energy consumption
considerably. To quantify the influence of factors that drive consumer choices for light bulbs, we conducted a
choice-based conjoint field experiment with 183 participants. We estimated discrete choice models from the
data, and found that politically liberal consumers have a stronger preference for compact fluorescent lighting
technology and for low energy consumption. Greater willingness to pay for lower energy consumption and lon-
ger lifewas observed in conditionswhere estimated operating cost informationwas provided. Providing estimat-
ed annual cost information to consumers reduced their implicit discount rate by a factor of five, lowering barriers
to adoption of energy efficient alternativeswith higher up-front costs; however, evenwith cost information pro-
vided, consumers continued to use implicit discount rates of around 100%, which is larger than that experienced
for other energy technologies.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In 2008, residential compact fluorescent lamp (CFL) socket satura-
tion1 was 10% nationwide (D&R International, Ltd., 2009), with the re-
mainder being almost entirely incandescent bulbs. About half of the
total lighting service (in terms of lumens) was provided by incandes-
cent bulbs, and a little over 20% was provided by CFL bulbs (Navigant
Consulting, 2010), suggesting that further adoption of CFLs– or other ef-
ficient lighting technologies, such as light emitting diodes – could
achieve considerable energy savings in the residential sector. In many
cases, these efficient alternatives would also save money for house-
holds. The slow transition to CFLs does not seem to bedue to poor public
awareness, since about 70% of Americans know about CFLs (Sylvania,
2010). These data suggest that there may be other barriers that keep
consumers from adopting CFLs.

Engineering economic analyses have long suggested that there is a
gap between current residential energy consumption and optimal levels
that could be achieved if the most energy-efficient and cost-effective
end-use technologies providing the same level of energy services were
adopted instead (Hirst and Brown, 1990; Jaffe and Stavins, 1994).
There have been numerous studies analyzingpotential reasons that pre-
vent optimal efficiency from being achieved (Anderson and Claxton,

1982; Brown, 2001; Golove and Eto, 1996), including low price of ener-
gy caused by distortional regulation,misplaced incentives between ten-
ants and landlords (also known as the principal-agent problem), lack of
access to financing options (Blumstein et al., 1980), uncertainty in the
future price of electricity or other fuels, low priority of energy issues
for consumers among other types of expenditures (Brown, 2001), con-
sumers' limited cognitive capacity (Anderson and Claxton, 1982), and
the fact that energy efficiency often is inseparable from other unwanted
features in products (Golove and Eto, 1996). A recent report from the
National Acedemies of Science (2009) states that well-designed policies
such as building energy codes, Energy Star product labeling, and effi-
ciency standards could help overcome these barriers and that these
policy initiatives already achieve primary energy savings of about 13
quadrillion BTU per year.

Researchers have taken various approaches to measure the relative
priority consumers place on energy efficiency versus upfront cost
when making technology purchases, including implicit discount rates
(IDRs) (Gately, 1980; Meier and Whittier, 1983). The IDR, or hurdle
rate, is the value of the discount rate for a hypothetical net-present-
value-maximizing consumer that best matches observed choice behav-
ior. When viewed from the framing of classical economic discounting,
consumers appear to behave as though they are using the implicit dis-
count rate to value current vs. future costs (with some error).

The IDRs are used as inputs in many energy-economy models to
explain how the share of end-use energy technologies evolves over
time. For example, the Energy Information Agency's (EIA) National En-
ergyModeling Systems (NEMS), assumes hurdle rates for consumer ap-
pliances that range from 15% (gas furnace) to 90% (electric clothes
dryer) depending on the residential end-uses considered (U.S. EIA,
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2011). There are debates on the usefulness and appropriate ranges of
such estimates of IDRs as a means of describing consumer choices and
behavior (Frederick et al., 2002). Attributing consumers' choices solely
to their discount rates can lead to misunderstanding consumer behav-
ior, since other factors such as the effect of marketing and advertising,
lack of knowledge, or imperfect substitutability across two competing
technologies also play a role in choices (Mulder, 2005). However, in
terms of energy system modeling, using high discount rates to explain
technology choices by consumers is still the standard approach.

To improve understanding of barriers to adoption of energy-efficient
lighting, we perform choice-based conjoint experiments and assess the
following:

1. Wemeasure consumer preferences andwillingness to pay (WTP) for
general illumination, and we identify barriers to the adoption of effi-
cient lighting technologies. Specifically, we quantify the importance
of product attributes (price, wattage, brightness, lifetime, and tech-
nology type) and consumer characteristics (income, education, hous-
ing characteristics, political views, perception of climate change, and
perception of toxicity issues) in determining bulb choice. UsingWTP
allows us to directly compare preferences for distinct attributes that
have different units.

2. We estimate IDRs for lighting technologies.
3. The Federal Trade Commission (FTC) implemented a new label that

includes estimated operation cost information and is required on
lamp packages starting in 2012.Wemeasure the effect of labeling es-
timated bulb operation cost on resulting choices, WTP, and IDRs.

In the next section,we summarize the literature on IDRs anddiscrete
choice analysis. Based on this understanding, the method and the re-
sults of our experimentwill be explained in Sections 3 and 4 respective-
ly, and in Section 5 we conclude.

2. Previous Work on Eliciting Implicit Discount Rates for Energy-
Saving Household Appliances

Research on consumers' IDRs started in the 1980s using two general
methods: 1) asking participants hypothetical questions about the future
savings they would require before making investments in energy effi-
ciency (see, for example, Houston, 1983), and more commonly, 2)

building econometric models of consumer utility or other quantities
and comparing coefficients for price and/or annual operating cost vari-
ables. The second method can implicitly derive discount rates without
forcing participants to answer speculative questions like the firstmethod
does. We use a variant of this second method with a nonlinear model
specification explained in the next section.

Table 1 provides a summary of several studies that elicited IDR for
end-use energy technologies over time. We provide more detail re-
garding the study from Hausman (1979), who constructed an indi-
vidual choice model for air conditioners (AC), as it has the closest
formulation to our model. In this model, each individual chooses a
specific AC that maximizes his or her utility function. The utility
function posed is:

U j ¼ −β1 " OCost j−β2 " Price j−β3 " Discomfort j þ ε j; ð1Þ

where Uj is the utility gained by selecting product j, OCostj is the an-
nual electricity cost ($/year) due to AC use, Pricej is the initial pur-
chase cost ($), Discomfortj is the discomfort level that increases as
the temperature setting for the AC increases, and εj is the error
term. From purchase records and capacity/efficiency information
of ACs in the market, Hausman estimated the coefficients in the
utility function using maximum likelihood estimation. The author
assumes that the utility depends on annualized capital cost, so
that β2 is an annualizing factor. Then, the implicit discount rate r
can be computed using the capital recovery factor for a given AC
lifetime q:

β̂2 ¼ β̂1
r 1þ rð Þq

1þ rð Þq−1
: ð2Þ

The resulting IDRs in the study ranged from 5% to 89% depending
on household income level.

Frederick et al. (2002) emphasize that the intertemporal choices,
such as investments in energy-efficiency, are not only influenced by
time preferences – what they define as “the preference for immediate
utility over delayed utility” – which we measure with IDRs. Rather,
they are determined jointly by various confounding factors such as

Table 1
Selective reviews of studies on implicit discount rate implied by purchases of energy efficient goods.

Study Product Data source Year of data
retrieval

Range of estimated discount rate Method

Hausman
(1979)

Room AC 46 samples from an MRI energy
consumption survey and AHAM
product directory

1978 5.1% ~ 89% (with income effect added) Econometric model (discrete
choice analysis)

Gately
(1980)

17 cu-ft. refrigerator Price data of models from three major
manufacturers

Jan 1978 45% ~ 300% Unspecified

Houston
(1983)

Hypothetical device Mail survey (1081 samples from
Indiana)

1979 10% ~ 50% (given as choices in the survey):
with mean of 22.5%

Direct inquiry

Meier and
Whittier
(1983)

17 cu-ft. refrigerator Price data from a nationwide retailer 1977–1979 1% ~ 102% Price and energy use comparison

Dreyfus and
Viscusi
(1995)

Automobile Residential Transportation Energy
Consumption Survey by DOE (1775
observations)

1988 11% ~ 17% Econometric model (Nonlinear
least square)

Ruderman
et al.
(1987)

Heating and cooling
equipment, refrigerator

Appliance purchase cost and efficiency
data from DOE and other reports, and
historical shipping data from DOE

1972–1980 18% ~ 825% Lifecycle cost minimization

Doane and
Hartman
(1984)

Thermal shell, window
and door, water heating,
space heating

Customer energy use survey by an
utility (GPU, now FirstEnergy)
(882 households), cost and savings
estimates from Lawrence Berkeley
Natl lab

1982 0% ~ 400% Econometric model (discrete
choice analysis)

Mau et al.
(2008)

Hybrid electric car and
hydrogen fuel cell vehicles

Mail survey (916 for HEV, 1019 for
HFCV)

2002 21% ~ 49% Controlled experiment
(discrete choice analysis)

This study Light bulbs Choice-based conjoint experiment
with 183 participants

2011 Explained below Controlled experiment (discrete
choice analysis)
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intertemporal arbitrage (e.g. imperfect capital markets), uncertainty
(i.e. uncertain about whether future energy savings will be achieved),
and expectations of changing utility functions (e.g. expecting increased
future income or wealth). Azevedo et al. (2009) and Jaffe and Stavins
(1994) also argued that IDRs include factors such as lack of technical
or financial knowledge, the role of marketing or advertising, or habit
formation. Despite this caveat, our estimation of IDRs for the lighting
sector will contribute to a better understanding of the energy efficiency
gap regarding the adoption of energy-efficient lighting.

3. Methods

3.1. Experimental Method

We observe choices made by participants in an experiment and con-
struct an econometric model of consumer utility as explained later in
Section 3.2. In preparation for this study, we conducted preparatory pi-
lots and interviews and found the five most important bulb characteris-
tics for consumers were price, energy use, color, lifetime, and brightness.
Some participants also mentioned bulb startup time, headaches, and
dimming as potential impeding factors for CFLs. Although there is no sci-
entific evidence that CFLs cause headaches (U.S. FDA., 2012),we included
health questions in our questionnaire because these reported subjective
perceptions can also influence choices.

The field experiment consisted of three main parts: 1) a conjoint
choice experiment, 2) choices of real light bulbs, and 3) questions on de-
mographics, experience, knowledge, and attitudes. To observe the effect
of disclosing annual cost information, subjects were randomly assigned
to either one of two groups. Half of the participants were shown annual
operating cost information in their choice tasks while the other half
were not. From this point, the group provided with the information is
referred to as the with-cost group and the group without it as the
without-cost group.

3.1.1. Experiment Setup
We designed a controlled experiment with a choice based conjoint

survey. The stated choices are then used to estimate several random
utility discrete choice models. The experiment was performed in a

mobile laboratory,2 using laptops set up with choice tasks (using Saw-
tooth software) and a survey.3 We asked a total of 39 questions (15
choice tasks + 24 additional questions). Each choice task presented
three alternatives among which a participant chooses one, as shown
in Fig. 1.

The attribute levels were selected to cover the ranges commonly
available in the market, and product profiles were selected from the
full factorial of 2 × 35 potential permutations. For each subject, 36 alter-
natives (12 tasks/subject × 3 alternatives/task) were generated using
Sawtooth's complete enumeration strategy, which seeks to achieve bal-
ance and orthogonality for main effects and first order interactions
while minimizing overlap among attribute levels within each choice
task (Kuhfeld, 1997). Many of the profiles represent combinations of at-
tributes that do not appear together for products in today'smarket (e.g.:
75 WCFLwith a 1000 hour lifetime), but all represent plausible and un-
derstandable alternatives, and the enumeration allows elimination of
sources of bias like multi-collinearity.

Threefixed choice taskswere identical for all participants. The role of
the first two fixed tasks was intended to checkwhether participants are
paying attention to the experiment. In the first fixed task, the alterna-
tives are identical except that one has a longer life than the others. In
the second one, one alternative had the lowest price and the longest
life. Fifteen subjects out of 183 who did not choose the dominant alter-
natives in these two tasks were considered as not attentive and re-
moved from our analysis.

The third fixed taskwas used to determine the compensation to par-
ticipants (hereinafter referred to as “compensation task”). Jointly with
the consent form, participants were given an instruction page where it
was stated: “Your choice from one specific question, placed randomly
among the fifteen choice questions you will answer, determines the
compensation you will receive at the end of the experiment.” Thus,
one among the three types of real light bulbs was handed out to partic-
ipants at the end of the experiment depending on their choices from the
compensation task. Participants were informed beforehand that they

Fig. 1.Example of a choice task seen by participants. The attribute values in the table change in each choice task following our randomizeddesign. Each subject answered15 tasks similar to
this one on a laptop. The annual operating cost in parentheses in the third row of the table was shown only to half of the participants.

2 The Center for Behavioral and Decision Research (http://www.cbdr.cmu.edu/
datatruck/index.html).

3 Sawtooth is a software commonly used for marketing studies and conjoint analyses
(http://www.sawtoothsoftware.com/).
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would be compensated with a type of light bulb decided based on their
choices, but theywere not toldwhich specific task determined the com-
pensation. Ding et al. (2005) tested adding an incentive among the con-
joint choice tasks and observed that this method helps participants to
make choices that are closer to their true preference, reducing the lim-
itation of observing stated preferences that differ frommarket behavior,
although the compensation may have also incentivized people who
might otherwise have chosen lower priced bulbs to choose the expen-
sive bulbs, which would lead to somewhat deflated price coefficients.

3.1.2. Physical Choice Task
Once the computer-based choice tasks were finalized, participants

were asked to follow the experimenter to another room, where they
were asked to choose amongfive pairs of real light bulbs in their original
packaging. Price information was provided on a tag next to each lamp
package. These choices were not used as compensation to participants;
these choices were simply used to compare physical light bulb choices
with the predictions from our model to assess external validity.

3.1.3. Demographics, Experience, Knowledge, and Attitudes
After the choice tasks, each participant was asked to fill out a survey

with questions on demographics, prior experiencewith lamps, environ-
mental attitudes, political views, basic understanding of bulb character-
istics, perception of climate change, and perception of toxicity issues.

3.2. Analytical Model

3.2.1. Consumer Utility Model
We estimate a mixed logit model, which models heterogeneity of

consumer preferences via random coefficients andmitigates the restric-
tive substitution patterns (i.e. independence of irrelevant alternatives
(IIA)) of a multinomial logit (MNL) model and improves fit.4 Logit esti-
mates using categorical variables for all attributes (discrete conjoint
levels) suggest linear or quadratic utility functions for numerical ex-
planatory variables (price, brightness, power, and lifetime), and we
use these throughout.5 The utility Uij that consumer i draws from prod-
uct alternative j is modeled as:

Uij ¼ Vij þ εij ¼
XK

k¼1

βk " xjk þ
XN

n¼1
γkn " zin " xjk

 !

þ εij; ð3Þ

where βk is the preference coefficient for attribute k, xjk is the k-th attri-
bute of alternative j, γkn is the coefficient for interactions between con-
sumer attribute n and product attribute k, zin is the n-th attribute of
consumer i, and εij is the random error term, taken as an iid standard
Gumbel distribution (Train, 2003). The interaction terms zin ⋅ xjk reveal
how individual characteristics can affect preference for bulb attributes.
We assume continuous numerical bulb attributes unless otherwise
noted, as shown in Table 2. For the mixed logit model, both βk and γkn
are randomvariables, assumed tobenormally or log-normally distributed
with distributional parameters estimated via likelihood maximization.

Specifically, our basemodel (Model 2 in Table 3), which excludes re-
spondent covariates zin, is:

Uij ¼ β1 þ σ1ν1i
! "

xTYPEj −exp β2 þ σ2ν2i
! "

xPRICEj þ exp β3 þ σ3ν3i
! "

xLIFEj

þ β4 þ σ4ν4i
! "

xBRIGHTj þ β5 þ σ5ν5i
! "

xBRIGHTj

# $2
þ β6 þ σ6ν6i
! "

xWATT
j

þ
X2

m¼1
β7m þ σ7mν7mi
! "

xCOLORmj

þDOPCOST
i ðβC

1x
TYPE
j þ βC

2x
PRICE
j þ βC

3x
LIFE
j þ βC

4x
BRIGHT
j þ βC

5 xBRIGHTj

# $2

þβC
6x

WATT
j þ

X2
m¼1

βC
7mx

COLOR
mj Þ þ εij;

ð4Þ

wherem indexes thediscrete levels of the color attribute,βandσ are the
distributional parameters for the random coefficients, and ν is a random
variable with an iid standard normal distribution.We assume that pref-
erence for type, brightness, and wattage varies normally in the popula-
tion and preference for price and life varies log-normally, since a change
in sign for preference of price or life would be counterintuitive and the-
oretically problematic. For interaction terms, we use fixed coefficients
for ease of interpretation. In our final model (Model 3 in Table 3), we
test the interaction between lifetime and income levels, which was
the only significant interaction term in several variants of the model
we tested. Other interactions between bulb types and perception/atti-
tude variables are included to understand whether consumers would
differ in their choices for incandescent or fluorescent technologies as a
result of their perceptions or attitudes toward climate change, toxicity
associated with certain lighting technologies, participants' awareness
of the relationships between bulb characteristics, and participants' po-
litical orientation.

3.2.2. Model for Estimation of Implicit Discount Rates
To estimate IDRs, many conventional studies including Hausman's

(1979) assumed a single exogenous value of average lifetime. This as-
sumption was inappropriate in our case considering our use of lifetime
as an independent variable determining consumer utility and also the
vast difference between a lifetime of a CFL and that of an incandescent

4 A likelihood ratio test between a MNL model and our basic mixed logit model gives
χ2(8) = 457.1 and p b0.001 (Model 1 and Model 2 in Table 3).

5 Additional results for alternative model specifications are available from the authors
upon request.

Table 2
Descriptions of variables.

Variable Description Value

xijTYPE Dummy indicating bulb type 0:
incandescent,
1: CFL

xijPRICE Price of the bulb j in subject i's choice task $0.49/$2.49/
$4.49

xmij
COLOR Dummy for color, where x1ijcolor is bright white and x2ijcolor

is daylight
0: No, 1: Yes

xijLIFE Lifetime of the bulb j in subject i's choice task 1000/8000/
12,000
[hours]

xijBRIGHT Brightness level of the bulb j in subject i's choice task 500/1200/
1800
[lumens]

xijWATT Power consumption of the bulb j in subject i's choice
task

9/25/75
[watt]

Di
OPCOST Dummy indicating whether annual operating cost

information is provided to subject i
0: No, 1: Yes

ziEXPERIENCE Dummy indicating whether subject i has used CFLs
before

0: No, 1: Yes

ziBUYBULB Dummy indicating whether subject i buys light bulbs
sometimes

0: No, 1: Yes

ziHEALTH Dummy indicating whether subject i has experienced
any health issues related to CFL use

0: No, 1: Yes

ziBACHELOR Dummy indicating whether subject i has a bachelor's
degree

0: No, 1: Yes

ziMIDINC

ziHIINC
Dummy indicating subject i's annual household
income, where mid-income is between $30 k and $75 k
and high-income is above $75 k

0: No, 1: Yes

ziTOXICCFL Dummy indicating whether the subject believes only
CFLs contain toxic materials

0: No, 1: Yes

ziTOXICBOTH Dummy indicating whether the subject believes both
bulbs contain toxic materials

0: No, 1: Yes

ziTOXIC,k Dummy indicating whether subject i's belief of
seriousness of toxicity issue related to light bulbs is in
category k
(base = not at all serious, k = not very serious/
somewhat serious/very serious/not aware)

0: No, 1: Yes

ziKNOWLEDGE Number of correct answers among the four questions
regarding basic lighting technology

0–4

ziCC,k Dummy indicating whether subject i's belief of
seriousness of climate change is in category k
(base = not at all serious, k = not very serious/
somewhat serious/very serious/not aware)

0: No, 1: Yes

ziLIBERAL Dummy indicating whether the subject is politically
liberal

0: No, 1: Yes

45J. Min et al. / Ecological Economics 97 (2014) 42–50



Table 3
Main results.

Variables Model 1
β

Model 2 Model 3

β σ β σ

Main effects of bulb attributes CCT = 5000K 0.00369 (0.0774) −0.00439 (0.130) 0.771 (0.0858)⁎⁎⁎ −0.0103 (0.130) 0.805 (0.0899)⁎⁎⁎

Type = CFL 0.434 (0.0689)⁎⁎⁎ 0.571 (0.136)⁎⁎⁎ 1.110 (0.101)⁎⁎⁎ 0.227 (0.537) 1.070 (0.103)⁎⁎⁎

Watt −0.00229 (0.00117)⁎ −0.00310 (0.00220) 0.0161 (0.00161)⁎⁎⁎ 0.00724 (0.00918) 0.0162 (0.00171)⁎⁎⁎

Brightness(×10^3 lm) 1.373 (0.374)⁎⁎⁎ 2.200 (0.470)⁎⁎⁎ 0.619 (0.145)⁎⁎⁎ 2.190 (0.473)⁎⁎⁎ 0.654 (0.128)⁎⁎⁎

Brightness^2 −0.478 (0.159)⁎⁎⁎ −0.839 (0.200)⁎⁎⁎ 0.195 (0.0659)⁎⁎⁎ −0.836 (0.201)⁎⁎⁎ 0.188 (0.0569)⁎⁎*
Life(×10^3 h) (log-normal) 0.0603 (0.00748)⁎⁎⁎ −2.655 (0.184)⁎⁎⁎ 0.916 (0.122)⁎⁎⁎ −2.845 (0.255)⁎⁎⁎ 1.070 (0.177)⁎⁎⁎

Price (log-normal) −0.151 (0.0200)⁎⁎⁎ −2.231 (0.240)⁎⁎⁎ 1.438 (0.149)⁎⁎⁎ −2.198 (0.245)⁎⁎⁎ 1.414 (0.148)⁎⁎⁎

Effect of providing annual
operating cost info

(CCT = 3700K) ∗ Dopcost 0.138 (0.114) 0.0788 (0.169) 0.0792 (0.169)
(CCT = 5000K) ∗ Dopcost 0.128 (0.111) 0.197 (0.179) 0.233 (0.181)
Watt ∗ Dopcost −0.00674 (0.00171)⁎⁎⁎ −0.0100 (0.00303)⁎⁎⁎ −0.0123 (0.00308)⁎⁎⁎

Life ∗ Dopcost 0.0293 (0.0108)⁎⁎⁎ 0.0292 (0.0156)⁎ 0.0320 (0.0151)⁎⁎

Brightness ∗ Dopcost −0.161 (0.533) −0.216 (0.656) −0.218 (0.663)
Brightness^2 ∗ Dopcost 0.0437 (0.228) 0.0856 (0.279) 0.0988 (0.281)
(Type = CFL) ∗ Dopcost −0.148 (0.0989) −0.164 (0.187) −0.0337 (0.190)
Price ∗ Dopcost 0.0147 (0.0284) −0.00270 (0.0366) 0.00749 (0.0377)

Interaction effects of consumer
attributes

Life ∗ High-income 0.0357 (0.0196)⁎

Life ∗ Mid-income 0.00139 (0.0169)
(Type = CFL) ∗ (CC = not very serious) 0.652 (0.543)
(Type = CFL) ∗ (CC = somewhat serious) 0.185 (0.444)
(Type = CFL) ∗ (CC = very serious) 0.426 (0.418)
(Type = CFL) ∗ (CC = not aware) −0.0639 (0.756)
Watt ∗ (CC = not very serious) −0.00447 (0.00859)
Watt ∗ (CC = somewhat serious) 0.000507 (0.00740)
Watt ∗ (CC = very serious) −0.00275 (0.00711)
Watt ∗ (CC = not aware) −0.0174 (0.0136)
(Type = CFL) ∗ (Toxic in CFL) ∗ (Toxic = not very dangerous) −0.347 (0.360)
(Type = CFL) ∗ (Toxic in CFL) ∗ (Toxic = somewhat dangerous) 0.506 (0.332)
(Type = CFL) ∗ (Toxic in CFL) ∗ (Toxic = very dangerous) −0.806 (0.480)⁎

(Type = CFL) ∗ (Toxic in CFL) ∗ (Toxic = not aware) −0.870 (0.810)
(Type = CFL) ∗ Knowledge −0.0518 (0.0897)
Watt ∗ Knowledge −0.000954 (0.00147)
(Type = CFL) ∗ Liberal 0.370 (0.200)⁎

Watt ∗ Liberal −0.00746 (0.00329)⁎⁎

Observations 6552 6552
−1936

6552
−1921Log-likelihood −2164

AIC/BIC 4361/4470 3920/4083 3925/4210

Standard errors in parentheses.
⁎⁎⁎ p b 0.01
⁎⁎ p b 0.05
⁎ p b 0.1
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bulb in the market. Instead, we estimated the IDR explicitly in the esti-
mation procedure using annualized cost:

annualized capital costð Þ ¼ r 1þ rð Þx
LIFE

1þ rð ÞxLIFE−1
" xPRICE: ð5Þ

Here, xLIFE is expressed in years.6 The base model specification for esti-
mating IDR is

Uij ¼ −exp β0 þ σ0ν0ið Þ β1 1þ β1ð Þx
LIFE
ij

1þ β1ð Þx
LIFE
ij −1

xPRICEij þ xOPCOSTij

 !

þ β2 þ σ2ν2ið ÞxTYPEij

þ β3 þ σ3ν3ið ÞxBRIGHTij þ β4 þ σ4ν4ið Þ xBRIGHTij

# $2
þ
X2

m¼1
β5m þ σ5mν5mið ÞxCOLORmij þ ij;

ð6Þ

where β0 represents the average consumer sensitivity to annualized
cost of ownership and β1 represents the consumer's IDR. Other βs can
be interpreted in the same way as in Eq. (4).7 8 Because the conjoint
task is randomized, the estimate of IDR should be independent of the
presence of other attributes in themodel. Throughmaximum likelihood
estimation, we can estimate the population's average IDR (i.e. β̂1 )
employedwhenmaking purchasing decisions for any lighting products.

4. Results and Discussion

4.1. Summary Statistics and Sample Characterization

Fifteen among the 183 subjects were removed from the analysis as
explained in Section 3.1, and the remaining 168 subjects were used
for this analysis.

Fig. 2 shows age and income distribution of the participant group in
this study, juxtaposed with country-, city- (Pittsburgh), state-level
(Pennsylvania) statistics retrieved from the 2010 U.S. Census (U.S.
Census Bureau, 2010). Since the neighborhood where the study was
performed has a large student population, the age group under 34 and
the income group under $10 k appear over-represented. Median tiers
for income, education, and age were $30–50 k per year, bachelor's de-
gree, and age group 25–34. 56% of participants were male, 41% owned
their houses, and 17% have children.

Ratings on seriousness of climate changewere observed to be corre-
lated with political view, but not with education or income: Liberal par-
ticipants believed that climate change is a more serious issue than
participants with different political views.

We also asked participants to rank the ten major technical factors
that would affect their choice for light bulbs. When rankings of these
factors were averaged numerically (a rough assessment), both with-
and without-cost groups showed the same decreasing order:
Brightness ≻ Price ≻ Lifetime ≻ Energy Cost ≻ Color ≻ Wattage ≻-
Type ≻ Wattage Equivalent ≻ Time to Full Brightness ≻ Shape.

4.2. Main Results

Table 3 shows ourmain results.Models 1 and 2 show the results for a
model that does not include consumer specific attributes,whileModel 3
in the second column includes consumer attributes.

We also compute mean willingness to pay (WTP) derived from
draws based on the parameter vector of the model and the variance co-
variancematrix from the estimation process incorporating the sampling
variance (Hensher and Greene, 2003).We do not report all WTP results

6 We assume that consumers accept the lifetime information written on packages as
true, i.e. they do not anticipate an early failure or a defective bulb.

7 Because the IDR model is nonlinear in parameters, the log-likelihood function may
have multiple local maxima. We seek global maxima via randomized multistart.

8 Wattage is perfectly correlated with operating cost, so their effects cannot be deter-
mined independently. By removing wattage from the utility function, we treat consumer
preference for lowwattage as though it is entirely preference for lowoperating cost. If con-
sumers also prefer low wattage for other reasons (e.g.: environmental), then we may be
overestimating preference for low operating cost. Thus, our estimates of implicit discount
rate may be biased downward.

0%

5%

10%

15%

20%

25%

30%

18-24 25-34 35-44 45-54 55-64 65-74 Over 75
P

er
ce

nt
ag

e

Age

0%

5%

10%

15%

20%

P
er

ce
nt

ag
e

Income
U.S. Pennsylvania Pittsburgh This Study

Fig. 2. Distributions of age and income (N = 168). City and state data are from the 2010 U.S. Census (U.S. Census Bureau, 2010).
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due to space limitations, but we discuss key findings, and additional in-
formation is available from the authors upon request.

WTP for a unit increase in variable X can be calculated taking ratios
between βX and βPRICE. However in our case, since many βX values and
βPRICE are assumed to be random, we cannot simply divide one with
the other. Instead, we use a Monte Carlo analysis, where we draw
mean beta values from their joint distributions incorporating sampling
variances and calculate the ratios for each draw. The mean of the ratios
yields the population mean WTP of attribute X.9

4.3. Analysis

4.3.1. How Do Dulb-Specific Factors Affect Consumer Choices?
From Model 2, we observed that, all else being equal, consumers

generally prefer CFL technology and a relatively high level of brightness.
Preferences for color and wattage are diverse: the standard deviations
in the population are significant while the means are not, implying
that some consumers prefer warmer color and lower wattage while
others prefer the opposite. Preferences for low power (p b 0.01) and
long life (p b 0.1) increasewhen operation cost information is provided.

Participants are willing to pay $2.63 more for CFL bulbs than for in-
candescent bulbs on average, all else being equal; however, there was
considerable variance, with some consumers willing to paymore for in-
candescent bulbs. Consumers are willing to pay $0.52 more for every
1000 h of lifetime increase within the range tested in the experiment
(1000 ~ 12,000 h), and that amount increased by $0.14 when they
were shown annual cost estimates. They are willing to pay $0.46 more
for every 10 Wdecrease within the range of 9 ~ 75 Wwhen the annual
cost information is shown.

4.3.2. How Do Consumer-Specific Factors Affect Consumer Choices?
At the p b 0.05 level, liberals have a stronger preference for low

wattage bulbs than non-liberals. At the p b 0.1 level, high income con-
sumers have a stronger preference for long life than low income con-
sumers, liberals have a stronger preference for CFLs than non-liberals,
and people who correctly answer CFLs contain toxic materials and rate
toxicity as “very dangerous” have a stronger preference for incandes-
cent bulbs over CFLs than people who incorrectly answer or rate it as
“not at all dangerous”. Gromet et al. (2013) supports thefinding that po-
litical ideology affects one's tendency to invest in energy efficient tech-
nology. Between Model 2 and 3 in Table 3, the significance of most
coefficients for main technical features of bulbs did not change. The
only changewas that themean coefficient of type variable becomes sta-
tistically insignificant suggesting that mean preference for this attribute
is mainly induced by different levels of toxicity or political view, while
the standard deviation remains significant meaning that the distribu-
tion itself is still significantly different from zero.

The relevance of various personal attitude variables in consumer de-
cision making has been emphasized in multiple discrete choice studies,
especially in the transportation sector (Ewing and Sarigöllü, 2000; Choo
and Mokhtarian, 2004; Vredin Johansson et al., 2006; Domarchi et al.,
2008). For example, Ewing and Sarigöllü (2000) investigated the effect
of personal attitudes toward environment and technology on prefer-
ences for alternative fuel vehicles through a choice experiment. They
found that while the attitudinal factors were significant, the increase
in log-likelihood of the model due to the factors was not large. Teisl
et al. (2008) suggested that consumers' perception or subjective con-
cern for environmental problems together with eco-label information
affected consumers' ‘eco-behavior’ such as purchasing greener vehicles.

We observed that the findings from these studies applied similarly to
lighting purchase decisions as well.

4.3.3. What is the Right Level of Model Complexity for Policy Analysis and
for Energy Models?

Table 3 presents the three models we test for this analysis. Among
them, the MNL model (Model 1) is the simplest and the easiest to un-
derstand, but it has the highest AIC/BIC values compared to the other
two models. A likelihood ratio test between Models 1 and 2 gives
χ2(8) = 457.1 and p b 0.001, while a similar test between Models 2
and 3 gives χ2(18) = 30.8 and p = 0.03. Considering the relativity of
statistical significance (depending on the significance level decision),
the AIC/BIC results, and also the understandability of themodel, we sug-
gest that Model 2 addresses choice complexity and has the benefit of
modeling consumer heterogeneity and avoiding the restrictive substitu-
tion patterns (i.e. IIA).

4.3.4. How Does Disclosing Annual Operating Cost Information Impact
Choices?

Models 2 and 3 show that having operating cost information is relat-
ed to preferences for longer lifetime and lower wattage with no signif-
icant influence on choices for color, brightness, type, and price.
According to the values inModel 2, and holding all other attributes con-
stant, when the operating cost information was given a consumer was
willing to pay $0.14 more for a 1000-hour increase of lifetime and
$0.46 more for a 10 W decrease of power compared to the case where
s/he did not see the information. A potential explanation for this is
that when the annual operating cost information is given, consumers
tend to pay more attention to the implications of lifetime and power
on future savings.10 The fact that lower power and longer lifetime affect
consumer choices less when operating cost information is not shown is
a potential reason why CFLs have underperformed in the market prior
to introduction of packaging labels that incorporate operating cost
estimates.

4.3.5.What are the Implicit Discount Rates (IDR) that Consumers UseWhen
Making Choices for Lighting Technologies?

Wefit a nonlinearmodel as shown in Eq. (6) above including just the
bulb attributes and the indicator of operating cost availability. We fit it
separately for with- and without-cost groups and for three different in-
come brackets (low/middle/high) to see the relationship between in-
come and IDR. The discount rate estimates from this model are
presented in Table 4. We found that average IDR is 100% for the with-
cost group (i.e. with operation costs information) and 560% for the
without-cost group (i.e. without operation costs information), and IDR
decreases as income increases. Among the with-cost group, the IDR of
the low income groupwas about five times larger than that of higher in-
come consumers. However, in the without-cost group, the standard
error of the low-income group was so large that we could not clearly
say the low income group's IDR is higher than others. The high income
group's IDR was significantly smaller than the mid-income group's
value. Thus the higher up-front cost and delayed benefits of CFLs rela-
tive to incandescent bulbs is particularly pronounced for low tomedium
income groups and less of an issue for high-income groups.

In the experimental setting, the without-cost group was not provid-
edwith operating cost information, butwith just thewattage of the bulb
and the number of hours of operation. We assumed in Eq (6) that con-
sumers' utility is represented by the annualized cost of ownership, such
that the participants are inferring annualized operating cost from usage
and power information during the choice process. The estimated IDRs in
Table 4 suggest that consumers are pessimistic about (or pay little at-
tention to) future economic savings delivered from the energy efficient

9 I.e., given an estimated vector of beta from our model is B (K × 1) and the estimated
variance–covariance matrix is V (K × K), we take N draws from MVN(B, V) (multivariate
normal) distribution,which results in amatrix, D (N × K). For each draw i (i = 1, 2,…, N),
we keep biX = βi

X if βX is assumed normal or convert it to biX = exp(βi
X + sdiX2/2) if βX is

assumed log-normal. We calculate E[biX/exp(βi
PRICE + sdiPRICE2/2)] over the N draws and

use it as a mean WTP for attribute X.

10 When operating cost information is presented, respondents also have more informa-
tion to process. However, this information appears to affect only preferences for power
and lifetime without significantly affecting other attributes.
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alternatives. It is possible that respondents who were not shown esti-
mated cost information made different assumptions about energy
prices or frequency of bulb use than the assumptions used to compute
estimated annual operating cost information for the label, and it is not
known which estimates are more accurate for individual consumers.

All of these estimated discount rates are on the high side in the
ranges of discount rate values used in the NEMS (U.S. EIA, 2011). Sav-
ings from individual energy efficient light bulbs are normally smaller
than savings from other energy efficient appliances,whichmay contrib-
ute to consumers choosing to use higher IDRs. This behaviorwas report-
ed by Green et al. (1997). This finding suggests that lighting can face a
higher barrier than other technologies with regard to the perception
of operating cost information and potential reductions in energy bills.
It also implies that while disclosing operating cost information as in
the new FTC label will contribute significantly to further adoption of ef-
ficient light bulbs, it alone is not likely to be sufficient, and other policies
with minimum efficiency standards (e.g. Section 321 of The Energy In-
dependence and Security Act (EISA)) will be needed to achieve more
savings.

4.3.6. Model Validation Through Physical Choice Observations
To examine the predictive accuracy of the estimated model, we first

calculated population-wide choice probabilities of the three alternatives
that were shown in the compensation task. These probabilities were
computed using a variant of Model 2, which was estimated excluding
the choicesmadeby participants in the compensation task. Choice prob-
abilities for each alternative were averaged over the distributions of the
random coefficients to yield these probabilities.11 In Table 5, we display
the frequency of chosen alternatives in the compensation task and the
population-wide choice probabilities predicted from the model respec-
tively for all subjects, without-cost, and with-cost group.

Concurrent to this, we used ourmodel to predict choice probabilities
for the five physical samples presented in the second part of our exper-
iment to test how our model predicts physical bulb choices. Physical
choices and predicted choice probabilities are presented in Table 6.

In Table 7 we compare the results from estimates of choices using
Model 2 with the choices made by participants in the compensation
task, and with the choices made in the physical choice task. We further
compare each of these with what the choices would be if one uses sim-
ply a random model that treats all choice alternatives as equally likely.

We use several metrics to compare across the choice probabilities
estimated by our model, choices in the compensation task, choices in
the task where participants were exposed to physical light bulbs, and
the random model:

• The log likelihood: Log of the product of predicted probabilities for all
observed choices. It indicates the goodness of the model fit.

• The equivalent average likelihood (EAL): The geometric mean of like-
lihood per choice made. It can be interpreted as the likelihood

normalized to the size of the data. This metric was referred to as aver-
age hit rate by Feit et al. (2010), although it is more closely related to
likelihood than hit rate.

• The average hit rate (AHR): The average probability that a draw from
the model would match the choice observed for a randomly selected
individual.

• The average share prediction error: The average value of the differences
between predicted share and actual share.

Not too surprisingly, ourmodel is better than a randommodel, offer-
ing a basic validity check. The improvement in EAL and AHR over the
random model appears relatively small. However, these comparisons
should be viewed with understanding that random utility choice
models are not intended to predict every individual's choices separately,
since individual choices themselves are stochastic. Rather, thesemodels
are intended to model aggregate behavior when integrated over the
population, and the average share error of themodel, an aggregatemea-
sure, is substantially better than random.

Our model predicts the choices for the compensation task with an
average of 4.2% error, compared to 10.4% error for a random model. In
the physical choice task, which involves unobserved technology attri-
butes such as packaging, and brand, that were not present in the con-
joint study, the model predicts share with an average of 5.7% error,
compared to 9.6% error for a random model. These metrics suggest
that attributes such as brand, packaging, shape, or size may play signif-
icant roles in choices, which we are not capturing in the model we
estimated.

5. Conclusions and Policy Implications

We examine reasons for limited adoption of compact fluorescent
bulbs using a choice-based conjoint experiment to quantify the effect
of product and consumer attributes on consumer choice in conditions
where annual operating cost estimates are disclosed vs. withheld. A ca-
veat is that the subjects collected in this experiment over-represent
young low income consumers.

Our results suggest that consumer choices are significantly affected
by most bulb characteristics tested, including color, brightness, lifetime,
power, type, and price. Perceived danger of toxicity in CFLs and political
view are the consumer-specific factors that have significant influence

Table 4
Estimates of implicit discount rates depending on income level and the availability of
operation cost information.

Implicit
discount
rates

Income level

Low Middle High Overall

(below $30 k/year) ($30 k–75 k/year) (over $75 k/year)

Operating
cost
shown

182% (38%) 57% (19%) 36% (35%) 100% (22%)

Operating
cost not
shown

764% (315%) 491% (49%) 203% (73%) 560% (70%)

Note: standard errors in parentheses.

11 Numerical integration was used with 1000 draws from the random coefficients.

Table 5
Distribution of choices of light bulbs in the compensation choice task and predicted
choices. The first two rows are for all 168 participants, the two rows in the middle are
for the 83 participants who were not shown the operating cost information. The last two
rows are for the 85 people who were given the cost information. Attribute values of
these alternatives are shown in Fig. 2.

CFL #1 Incandescent #1 CFL #2 Total

All subjects Observed # of
choices

59 (35.1%) 30 (17.9%) 79 (47.0%) 168

Predicted % of
choices

31.1% 24.2% 44.7% 100%

Without-cost
group

Observed # 32 (38.6%) 20 (24.1%) 31 (37.3%) 83

Predicted % 30.4% 29.0% 40.6% 100%
With-cost group Observed # 27 (31.8%) 10 (11.8%) 48 (56.4%) 85

Predicted % 31.8% 19.6% 48.6% 100%

Table 6
Distribution of actual choices by subjects (in the order of popularity) and of predicted
choice probabilities (in the order of size of probability) for physical sample choices.

CFL #2 CFL #1 CFL #3 Incandescent
#1

Incandescent
#2

Total

Observed # of
Choices

74
(44.1%)

33
(19.6%)

32
(19.0%)

23 (13.7%) 6 (3.6%) 168

Predicted % of
Choices

30% 27% 19% 15% 9% 100%
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on preferences for bulb attributes. Perceived severity of climate change
or basic technical knowledge in lighting did not significantly affect pref-
erences. This result suggests that educational efforts such as communi-
cating the low risk of mercury in CFLs can be effective in driving CFL
adoption, while linking CFL use and climate change mitigation is less
to be helpful. However, our results suggest that these consumer-
specific characteristics are not as significant in predicting consumer
choices as bulb characteristics.

We find that providing operating cost information induces stronger
preferences for bulbs with longer lifetime and lower energy consump-
tion. Implicit discount rates (IDRs) decreased from over 560% to around
100%when respondents were provided annual operating cost estimates.
The IDRswere observed to decrease as household income increases. This
suggests that consumers weigh future savings more strongly when the
information is given. The combination of these two findings put the
new FTC labeling rule on a strong footing. The relationship between
IDR and income suggests that higher-income consumers are more likely
to adopt CFLs, and the high IDRs used by middle and lower income con-
sumers presents a particularly large barrier to adoption.

Even when cost information is available, the estimated IDR for indi-
vidual lamp choices of around 100% is still larger than most values used
for other technology types in the NEMS model. Our findings can be
meaningfully used to update such models. Future studies can examine
why the discount rates are so high for lighting and whether alternative
models such as hyperbolic discounting or models that account for
satisficing behavior can explain consumer choices better than tradition-
al economic discounting.
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