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� 106 homes are simulated in EnergyPlus using energy audit and survey records.
� Simulation results are compared to monitored data at the device level.
� Modeling reveals large discrepancies between simulated and actual energy use.
� Sensitivity analysis is used to identify factors most important for accurate models.
� The role of EnergyPlus in residential energy code design and analysis is discussed.
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a b s t r a c t

Building energy simulation tools are now being used in a number of new roles such as building operation
optimization, performance verification for efficiency programs, and – recently – building energy code
analysis, design, and compliance verification in the residential sector. But increasing numbers of studies
showmajor differences between the results of these simulations and the actual measured performance of
the buildings they are intended to model. The accuracy and calibration of building simulations have been
studied extensively in the commercial sector, but these new applications have created a need to better
understand the performance of home energy simulations.
In this paper, we assess the ability of the DOE’s EnergyPlus software to simulate the energy consump-

tion of 106 homes using audit records, homeowner survey records, and occupancy estimates taken from
monitored data. We compare the results of these simulations to device-level monitored data from the
actual homes to provide a first measure of the accuracy of the EnergyPlus condensing unit, central air
supply fan, and other energy consumption model estimates in a large number of homes. We then conduct
sensitivity analysis to observe which physical and behavioral characteristics of the homes and homeown-
ers most influence the accuracy of the modeling.
Results show that EnergyPlus models do not accurately or consistently estimate occupied whole-home

energy consumption. While some models accurately predict annual energy consumption to within 1% of
measured data, none of the modeled homes meet ASHRAE criteria for a calibrated model when looking at
hourly interval data. The majority of this error is due to appliance and lighting energy overestimates, fol-
lowed by AC condensing unit use. These inaccuracies are due to factors such as occupant behaviors and
differences in appliance and lighting stocks which are not well-captured in traditional energy audit
reports. We identify a number of factors which must be specified for an accurate model, and others where
using a default value will produce a similar result.
The use of building simulation tools reflects a shift from a component-focused approach to a systems

approach to residential code analysis and compliance verification that will serve to better identify and
deploy efficiency measures in homes. By better understanding the limitations of home energy simula-
tions and adopting strategies to mitigate the effects of model errors, simulation models can serve as valu-
able decision making tools in the residential sector.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Increased attention to building energy performance, improved
software packages, and decreasing computing power requirements
have led to the use of building energy simulation tools in a large
and growing number of applications [1–3]. These tools are now
being used in their traditional role as decision support for building
and retrofit design in the commercial sector, but also in new roles
such as building operation optimization [1], performance verifica-
tion for energy efficiency programs like LEED [4], and – recently –
building energy code analysis, design, and compliance verification
in the residential sector [3,5]. However, increasing numbers of
studies show major differences between the results of these simu-
lations and the actual measured performance of the buildings they
are intended to model [6–13]. These discrepancies, combined with
the new application of building simulation tools to policy and
investment decision-making in the residential sector, have created
a need to better understand the accuracy of their results and
develop methods for calibrating them to ensure reliable outputs.
Doing so will allow policymakers to apply these tools in a way that
will ensure that residential building energy codes continue to deli-
ver the energy savings for which they are intended.

The Department of Energy’s EnergyPlus is the most prominent
simulation package being used in these new residential applica-
tions. As part of their work for the Building Energy Codes Program,
Pacific Northwest National Laboratory (PNNL) established a
method for analyzing potential changes to residential building
codes based on EnergyPlus [3]. The method first involved the con-
struction of prototype EnergyPlus models of simple single- and
multi-family residences that meet existing region-specific building
codes. The cost-effectiveness of potential changes to these codes is
evaluated by incorporating a proposed change in the model –
reducing allowable building leakage rate, for instance – simulating
the building’s energy performance using local weather data, and
observing the resulting change in energy consumption. The simu-
lated energy cost savings are then compared to the first cost to
estimate the lifecycle cost of implementing the change. These
results then serve to inform the DOE’s position on whether to
approve a code change proposed by the International Code Council
(ICC), but are also used to inform state and local jurisdictions about
the expected effects of adopting a new code when they are consid-
ering a change.

EnergyPlus is also in the process of being incorporated into a
tool being developed by the Residential Energy Services Network
(RESNET) to standardize residential energy benchmarking for
energy code compliance. RESNET is a not-for-profit membership
corporation that develops standards used in home energy effi-
ciency ratings [14]. RESNET’s Home Energy Rating System (HERS)
is an industry standard calculation specification that allows certi-
fied energy raters to assign efficiency scores to homes that can
be used to demonstrate their energy code compliance in most
states and jurisdictions [5,15]. Efficiency scores are currently calcu-
lated using any one of a number of software programs that have
been approved and accredited by RESNET [16]. In March of 2016,
however, RESNET and the DOE announced that this suite of soft-
ware packages is going to be replaced by a single-source tool based
on EnergyPlus [5]. While the tool has not yet been released or
described in detail, its announcement alone highlights the need
to better understand the ability of EnergyPlus to accurately model
residential buildings.

Each release of EnergyPlus is thoroughly validated using three
types of methods [17]. Analytical verification compares EnergyPlus
results to mathematically determined results for individual build-
ing components and systems. Comparative testing compares Ener-
gyPlus simulation results to the results of other simulation
packages. These two validation methods are described in a variety
of technical standards including ANSI/ASHRAE Standard 140,
Method of Test for the Evaluation of Building Energy Analysis Com-
puter Programs. Finally, empirical validation compares simulation
results with measured energy consumption from actual buildings.

Previous empirical studies of the accuracy of building energy
simulations have focused almost exclusively on the commercial
sector and have often found large discrepancies between modeled
and actual performance. These studies typically involve the con-
struction of a model of a building in which extensive data gather-
ing has been conducted. Using measured and observed details of
the building and its operation, a detailed model is constructed
and its simulated performance is compared to measured data such
as electric or gas utility data [10,17], environmental sensor data
[11], or submetered system-level data [8,12,13]. Models are often
then modified to observe the effects of varying certain parameters
to observe their effect on simulated energy consumption [17].
Based on these results, conclusions are drawn about which param-
eters are most important to specify and the suitability of the cho-
sen model and application, and recommendations are made to
improve modeling efforts in the future. The results of some of these
comparison studies have called into question the basic ability of
simulation tools to predict energy use in buildings given all of
the uncertainties involved in building an accurate model [17].

In addition to empirical validation efforts, there are a growing
number of papers dedicated solely to the methods by which these
models can be calibrated. Coakley et al. summarized these meth-
ods in a literature review of around 70 papers addressing issues
of calibration in building simulation modeling [18]. The authors
propose four classes of calibration methods: (i) calibration based
on manual, iterative and pragmatic intervention, (ii) calibration
based on a suite of informative graphical comparative displays,
(iii) calibration based on special tests and analytical procedures,
and (iv) analytical and mathematical methods of calibration. The
paper generally finds no consensus method for building simulation
calibration, nor does it find a widely accepted set of criteria for val-
idating these models. However, given the large body of literature
found by the authors, they conclude that the work already avail-
able could inform the development of standardized methods for
model calibration. Recently, attention has turned to the develop-
ment of automated model calibration methods that rely less on
modeler expertise and more on mathematical and analytical
approaches [19]. These methods generally use optimization tools
to minimize an error term between simulated and actual data by
tuning specified model parameters [8,19].

Both empirical validation studies and calibration studies are
typically limited by data availability to a small number of build-
ings. The conclusions that can be reached from such studies are
therefore limited as well. To address this issue and increase sample
sizes, research is now turning to batch simulations in which large
numbers of buildings are modeled in parallel. Rhodes et al. used
one such method to simulate 54 homes in the Pecan Street study
using energy audit and survey records as model inputs [20]. A
baseline model of each home was built using actual building char-
acteristics and simulated using Typical Meteorological Year (TMY)
data. Three alternate scenarios were then simulated which (1) used
actual weather data, (2) updated default thermostat settings with
actual thermostat settings, and (3) simplified each home’s geome-
try into a rectangular footprint. Each set of simulation results were
compared to measured whole-home annual electricity consump-
tion. Results indicate that including actual thermostat settings
improves model accuracy, actual weather data unexpectedly wors-
ened accuracy, and simplifying home geometries had little effect
on outcomes. Errors for individual homes ranged from underesti-
mating actual annual consumption by 60% to overestimating by
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over 100%. However, when results are aggregated to measure the
model’s ability to predict the combined electricity consumption
of all the homes, errors are reported as less than 3%.

In this paper, we advance this approach by modeling and simu-
lating 106 homes from the same Pecan Street study used by Rhodes
et al. [20]. Simulating a large number of actual, occupied homes in
parallel ensures that a wide range of physical home characteristics
and occupant behaviors are included in our modeling. Doing so
allows us to draw conclusions that are applicable to a broader pop-
ulation of homes than if our results were based on any single
home, its occupants, and their energy consumption. We use PNNL’s
residential prototypes as a starting point, then modify these proto-
types with information from Pecan Street’s energy audit records,
homeowner survey results, and occupancy profiles estimated from
device-level energy consumption data to more closely resemble
the actual monitored homes. We compare the results of these sim-
ulations to device-level monitored data from the actual homes to
provide the first ever empirical validation of the EnergyPlus con-
densing unit, central air supply fan, and other energy consumption
model estimates in a large number of homes. By comparing simu-
lated and actual energy consumption at this detailed level, we are
able to more closely identify the source of EnergyPlus model errors
and provide detailed recommendations on how to address them
and mitigate their effect on decision-making in the residential
sector.

We then conduct a sensitivity analysis to observe which physi-
cal and behavioral characteristics of the homes and homeowners
most influence the accuracy of the modeling. These results provide
context for the use of EnergyPlus as a decision-making tool in the
residential sector. Specifically, they show the approximate level of
accuracy that researchers can expect when simulating homes dis-
playing a range of physical characteristics, appliance stocks, and
occupant behaviors. Sensitivity analysis results also provide a mea-
sure of which characteristics most influence model accuracy and
need to be included for accurate system-level modeling.

The rest of this paper is organized as follows. Section 2
describes the data, modeling methods, and assumptions used in
the analysis. Section 3 presents results of the modeling and sensi-
tivity analysis. Sections 4 and 5 provide a discussion of these
results, conclusions reached, and policy implications.
Table 1
Summary statistics for PNNL prototype models and simulated Pecan Street homes.

PNNL prototype

Value

Occupant characteristics
Residents (qty) 3.0
Household income ($/yr) –

Building envelope characteristics
Number of floors 2
Foundation type (slab/pier) Varies
Home age (yrs) �10
Area (ft2) 2400
Ceiling height (ft) 8.5
Building infiltration (ELA, cm2) 960
Window U-factor (W/m2 K) 4.3
Attic insulation R-value (m2 K/W) 4.3

Appliance characteristics
Condensing unit efficiency (EER)a 13.5
Condensing unit age (yrs) 0
Heating setpoints (daily avg., �F) 72
Cooling setpoints (daily avg., �F) 75
Heat pump/gas furnace (qty/qty) Varies
Programmable thermostat (y/n) Yes
Water heater fuel (gas/electric) Varies

a Nameplate efficiency.
2. Material and methods

2.1. Residential building prototypes

As a starting point for our modeling, we use PNNL’s single-
family detached home EnergyPlus prototypes built according to
the IECC 2006 residential building energy code. Prototype models
are available that were built to simulate homes compliant with
IECC 2006, 2009, and 2012 [21]. The oldest available prototypes
were chosen to more closely match the older Pecan Street building
stock. Prototypes are also differentiated by location to account for
variations in building energy codes by climate zone. Homes in the
Pecan Street sample are located in and around Austin, Texas, so we
select prototypes designed for San Antonio, which is located in the
same climate zone [22]. A summary of some of the key character-
istics of these prototypes can be found in Table 1.
2.2. Appliance-level energy use data

Appliance- and home-level energy consumption data were
obtained from the Pecan Street Research Institute’s Dataport for
the year 2015 [23]. Pecan Street Inc. is a 501(c)(3) not-for-profit
corporation and research institute headquartered at The University
of Texas at Austin. Volunteers from in and around Austin elect to
join the study and work with researchers at Pecan Street to decide
which circuits and devices in their homes to monitor. The resulting
dataset includes records for approximately 722 homes, with data
available for up to 28 circuits per home at 15-min intervals. We
apply validation criteria which require at least one full year of
whole-home use data with less than one week of missing values.

To ensure a fair comparison between EnergyPlus simulations
and monitored data, energy consumption from electric vehicles,
garages, pool lights, pool pumps, and sprinklers are subtracted
from monitored whole-home consumption when these devices
were monitored. These devices are not modeled in EnergyPlus sim-
ulations and would otherwise be a source of error.

Average whole-home electricity consumption in the Pecan
Street sample is around 33% less than comparable homes in the
EIA’s 2009 Residential Energy Consumption Survey (RECS) and
around 13% less than the average Austin Energy customer
Pecan street

Min Mean Max

1.0 2.6 6.0
$30k $130k $230k

1 1.5 2
– 94/12 –
6 28 96
800 2100 4000
7.5 9 14
310 960 2400
2.2 4.1 7
1.1 5.3 9.2

5.0 10.9 17.0
4 10.1 27
63 69 75
68 77 82
– 7/99 –
– 98/8 –
– 100/6 –
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[24,25]. Thus, while the sampled homes are more efficient than the
average Texas home, they are likely to provide a reasonable esti-
mate of household electric consumption around Austin.
2.3. Energy audit and homeowner survey records

Energy audit and homeowner survey records are available for
many homes in the Pecan Street sample. As part of their ongoing
research, the Pecan Street Research Institute has implemented sev-
eral interventions in volunteer residents’ homes and apartments.
These include providing residents access to an online portal to
observe their energy use, simulating time-of-use pricing schemes,
and providing new appliances to homeowners, among others. A
description of these programs and the number of participants in
each can be found in Appendix A.

Energy audits were conducted and recorded in the Pecan Street
dataset between January 2011 and September 2014 as part of two
separate programs. The majority of audits were conducted by an
outside contractor before monitoring installations began in Jan-
uary 2012. The remaining audits, conducted in late 2013 and early
2014, were conducted by Pecan Street personnel. Annual surveys
are administered to participants in the Pecan Street study. Records
from these surveys provide demographic and other information
about the homes and their occupants.

In selecting homes to be included in final simulations we
include only those which meet the monitored data validation crite-
ria described above, and which also have an energy audit record
and at least one annual survey record. A total of only 106 homes
remain that meet these requirements. Of these, 102 have complete
condensing unit data and 75 have complete central air supply fan
data.

A summary of key data collected in the audits, surveys, and
monitoring installations is shown below in Table 1.
2.4. Occupancy estimation

Home occupancy is an important determinant of the timing and
quantity of energy consumption in homes. Survey results provide
an incomplete accounting of occupied hours for each home, so
we estimate occupancy based on device-level monitored data.

To do this, monitored circuits and devices are separated into
accompanied and activated loads. Accompanied loads are loads
which indicate that the home is likely occupied if they are consum-
ing energy. Activated loads are loads which can be consuming
energy even if the home is unoccupied. For these loads, occupancy
can only be estimated by looking for events where the device or
circuit sees a significant change in load, indicating that someone
has activated or deactivated the circuit. See Table 2 for a list of
accompanied and activated loads. Note that loads which do not
vary significantly based on occupancy, such as refrigerators or air
conditioners, are not included in either load class and are not used
to estimate occupancy with this method.

Using these allocations, annual energy consumption profiles for
each appliance or circuit in the 106 homes are used to estimate
occupancy for every 15-min interval for the year 2015. If any
accompanied load in a home is consuming over 50 W in a given
Table 2
Appliance type allocations for occupancy estimation.

Accompanied loads Activated loads

Electric vehicles, laundry machines, dishwashers, in-sink
disposals, microwaves, ovens, electric ranges

Bathroom circuits, be
circuits, living room c
ventilation hoods
interval, the home is flagged as being active in that period with P
(Active) = 1.0. Similarly, if any activated load sees an increase or
decrease in demand of over 50 W, the home is flagged as being
active in that period with P(Active) = 1.0. If no activity is identified,
the home is flagged as inactive with P(Active) = 0. Averaging these
activity profiles for every day in 2015, we generate a probabilistic
daily activity profile for each home. For example, if a home is
flagged as active every other day at 10 AM, the probabilistic daily
activity profile will have P(Active) = 0.5 at 10 AM for that home.

Because this method relies on device activity, it fails to identify
hours where homes are likely occupied, but the residents are inac-
tive or sleeping. To correct for this, we assume that most homes
follow a typical occupancy pattern of waking up between 3 AM
and 11 AM and arriving home between 6 PM andmidnight. To esti-
mate inactive – but likely occupied – hours, peak activity is identi-
fied for each of these periods. Prior to peak activity in the morning,
and following peak activity in the evening, it is assumed the home
is always occupied with P(Occupied) = 1.0. Between each home’s
wakeup and arrival hours, it is assumed that activity actually
reflects occupancy, with P(Occupied) = P(Active).

A sample home showing the difference between the calculated
activity profile and estimated occupancy profile is shown in Fig. 1.
This method is used to estimate an occupancy profile for each
home in the final sample.
2.5. Modeling operations

EnergyPlus version 8.4.0 was used to run this study’s simula-
tions. Fully specified EnergyPlus models of the 106 Pecan Street
homes are generated by modifying the PNNL prototypes’ input
data files (IDFs) with the home and occupant characteristics
described above. These IDFs are text files which describe the phys-
ical, operational, and behavioral characteristics of the modeled
homes and their occupants. To modify the prototype IDFs, a Matlab
program was used to open each file, locate the fields to be edited,
and replace the default values or descriptions with the actual
home’s characteristics. The characteristics for which we have data
from either Pecan Street’s energy audit or survey records are listed
and described below.

� Number of floors.
� Primary space heating fuel – PNNL prototypes are available
with heating supplied by a heat pump, electric resistance heat-
ing, an oil furnace, or a gas furnace. Pecan Street audit records
are used to assign the correct heat source for each home.

� Foundation type – Foundations in the Pecan Street homes are all
either slab or pier-and-beam. Without additional information to
specify slab thicknesses or other details, we rely on the baseline
slab and pier-and-beam foundations defined by PNNL in their
prototypes. The ground heat transfer method used is the pre-
processor method, which is also the default used in the PNNL
prototypes. More details on these factors and the prototypes
can be found in [21].

� Building square footage – Building square footage was available
for each of the 106 homes. Length, width, and building footprint
shape are not specified, so we model Pecan Street homes as
droom circuits, dining room circuits, garage circuits, kitchen circuits, lighting
ircuits, office circuits, outdoor lighting circuits, pool lighting, utility room circuits,
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Fig. 1. Estimated activity and occupancy profiles for a single home where morning activity peaked at 8 AM and evening activity peaked at 9 PM.
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rectangular homes with width 1.4 times the length. This is a
reasonable assumption, as Rhodes et al. showed in [20] that
simplifying the geometry of homes does not significantly
impact EnergyPlus modeling performance.

� Attic insulation R-value – Attic insulation value was recorded in
energy audit records. When data was missing, it was replaced
with the average value from the remaining homes.

� Ceiling height – When ceiling height was not reported for an
individual home, it was replaced with the average value from
the remaining homes.

� AC condensing unit capacity – Nameplate condensing unit
capacity is known for all 106 homes in the sample.

� AC condensing unit efficiency – In addition to the nameplate
efficiency of each home’s condensing unit, the age of each unit
was known. To account for performance degradation over time,
we estimate actual operating efficiency according to the
method described in [26].

� Water heater fuel – Water heater fuel was determined based on
energy audit reports and the availability of monitored data.

� Building shell infiltration – Building shell infiltration was
reported in Pecan Street energy audits as the result of a blower
door test conducted on each home. Results were reported in
units of air changes per hour at 15 Pa. PNNL’s prototypes specify
infiltration in terms of equivalent leakage area. To convert
between the two units, we use the method described in [27].
The opening of windows and doors – either as an intentional
means of temperature control or simply as occupants enter
and leave the home – effectively increases infiltration rates.
No data is provided to describe how often windows and doors
are left open in the Pecan Street homes, so the default assump-
tions from the PNNL prototypes are used.

� Occupancy schedule – Home occupancy was estimated as
described above.

� Building orientation – The orientation of each home was
reported for all homes as one of the 16 cardinal, intercardinal,
or secondary-intercardinal directions.

� Number of residents – When number of residents was not
reported for an individual home, it was replaced with the aver-
age value from the remaining homes.
� Heating and cooling setpoints – Heating and cooling setpoints
were reported in one of Pecan Street’s annual surveys. Residents
reported their heating and cooling season thermostat setpoints
for their sleeping, morning, workday, and evening hours with-
out reporting actual hours. Because explicit hours for these peri-
ods were not identified, we assign sleeping hours as midnight to
7 AM, morning hours as 7 AM to 9 AM, workday hours as 9 AM
to 6 PM, and evening hours as 6 PM to midnight. When set-
points were not reported, we assign these values the average
of the reporting homes. Homes without programmable ther-
mostats were assigned the same value for all periods.

� Window area per wall – Window area for each external wall, by
orientation, was reported in Pecan Street audit records. When
window area was not reported, values were assigned as the
average of all reporting homes.

� Window type –Windows were described in Pecan Street energy
audit records as a combination of frame material and number of
panes. EnergyPlus describes windows by their overall U-value,
which is primarily a function of these two factors. Overall U-
factor for each window type was determined according to
[28]. When window type was not reported, values were
assigned as the average of all reporting homes.

The final input required to simulate the Pecan Street homes in
EnergyPlus is weather data. To ensure that simulated conditions
match actual conditions for the monitored period as closely as pos-
sible, recorded weather data for Austin in 2015 is taken from [29].

To measure the degree to which the EnergyPlus simulations
match monitored data, accuracy will be reported in terms of the
hourly coefficient of variation of the root mean square error
(CVRMSE). This metric is used in ASHRAE Guideline 14 to define
a model as calibrated if its hourly CVRMSE is less than 30% [30].

2.6. Modeling assumptions and limitations

In addition to the assumptions described above, we assume that
any changes made by homeowners based on recommendations
from the energy audits are minor and do not significantly affect
2015 energy consumption. We also rely on the accuracy of these
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energy audit records to describe the physical characteristics of the
home and its appliance stock. Similarly, we assume the results of
the homeowner surveys provide an accurate representation of
the thermostat setpoints and number of occupants in each home.

Surveys offer little additional information on the behavior of the
simulated homes’ occupants. Occupant behavior determines how
often lighting, HVAC, and other loads operate, and is therefore
well-known to be a significant determinant of a building’s energy
consumption [31,32]. Additional data gathering would obviously
improve simulation accuracy, as numerous important characteris-
tics of the modeled homes and their occupants’ behavior are miss-
ing. In using the PNNL prototypes, we assume that these missing
fields are relatively accurately represented by the default values
and assumptions used in these models.

2.7. Sensitivity analysis

Once the prototype home models have been modified with the
actual monitored homes’ characteristics and occupant behaviors,
sensitivity analysis will be conducted to determine which factors
have the greatest impact on the accuracy of the simulations. This
is done by specifying all fields but one with the actual homes’
reported characteristics. The remaining field is assigned the default
value used in the PNNL prototype models. The effect of this modi-
fication is measured as the change in CVRMSE between the fully
specified baseline case and the less specified sensitivity analysis
case.

DCVRMSE ¼ CVRMSESensAnalysis � CVRMSEBaseline ð1Þ
For sensitivity analysis of floor area, condensing unit efficiency,

building infiltration, heating and cooling setpoints, home orienta-
tion, ceiling height, window type, window area, attic insulation
R-value, occupancy pattern, and number of residents, the actual
values are simply reset to the default values used in the PNNL pro-
totype models. In the baseline simulations, AC condenser capaci-
ties were specified with the actual homes’ nameplate capacities.
For the sensitivity analysis, we allow EnergyPlus to autosize the
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Fig. 2. Scatter plot showing simulated whole-home energy consumption on the x-axis
perfect agreement, while red diagonals show ±50% error bounds. (For interpretation of th
of this article.)
condenser capacity. We test sensitivity to correcting nameplate
condensing unit efficiency for its age by simply using the name-
plate efficiency, without the correction factor described in Sec-
tion 2.5. For lighting, we change the modeled homes’ lighting
power density from the default value in the IECC 2006 prototype
to the updated IECC 2012 value, thereby greatly increasing the effi-
ciency of each home’s lighting array. Finally, we vary the exterior
construction material from its default stucco construction to stan-
dard brick masonry construction.

3. Results

3.1. Baseline model accuracy – whole-home consumption

Fig. 2 shows a scatter plot with the EnergyPlus simulated
annual energy consumption of the modeled homes on the x-axis
and measured annual energy consumption on the y-axis. The black
diagonal shows where simulated energy consumption exactly
matches actual consumption. The two red lines show ±50% relative
annual error bounds.

EnergyPlus simulations are seen to generally overestimate
energy consumption in the simulated homes. Of the 106 homes
simulated, 46 homes saw their annual energy consumption overes-
timated by over 50%, 45 homes were overestimated by 0–50%, and
only 15 homes were underestimated. Average monitored whole-
home consumption is around 10,700 kWh/yr, while average Ener-
gyPlus simulated consumption is around 14,400 kWh/yr. Nearly all
of the >50% overestimates occurred in homes whose actual annual
consumption is less than 10,000 kWh/yr, indicating that Energy-
Plus simulations are less accurate in accounting for the physical
characteristics and behaviors seen in these exceptionally efficient
homes.

3.2. Baseline model accuracy – condensing unit consumption

Fig. 3 shows the simulated and actual annual energy consump-
tion of these condensing units. Of the 106 homes simulated, only
 consumption (MWh/yr)
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and actual measured energy consumption on the y-axis. The black diagonal shows
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102 had monitored data available for their condensing unit, so only
this smaller sample is presented.

This figure shows annual condensing unit energy consumption
being overestimated by >50% in nearly half of simulated homes.
Average simulated condenser consumption is around 1,500 kWh/
yr more than monitored condenser consumption, which explains
around 40% of whole-home simulation error. To determine the
source of this error, 15-min monitored and simulated interval data
profiles were plotted for homes where condensing unit consump-
tion was overestimated by >50% in EnergyPlus.

Fig. 4 shows the average monitored and simulated condensing
unit demand for the 52 homes in which EnergyPlus simulated
energy consumption was >50% more than actual monitored con-
sumption. The left figure shows average simulated and monitored
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Fig. 4. Average condensing unit demand for homes where EnergyPlus overestimated an
unit demand for a day with negligible heating or cooling energy. (b) Shows average con
demand profiles for a day with negligible heating or cooling
energy. This shows EnergyPlus correctly identifying no significant
cooling load and very closely matching the monitored condenser
use on this day on average across all 52 homes. The right figure
shows a peak cooling day. This shows the EnergyPlus simulation
overestimating both the hours where cooling is required and the
condensing unit demand during cooling hours. Interval data pro-
files for homes with <50% error and underestimated condensing
unit consumption can be found in Appendix B.

3.3. Baseline model accuracy – central air fan consumption

Fig. 5 shows the simulated and actual annual energy consump-
tion of central air supply fans. Of the 106 homes simulated, only 75
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had monitored data available for their supply fan, so we only pre-
sent this smaller sample.

Central air supply fan energy is more accurately simulated than
condensing unit energy. Only 19 of the 75 homes included are out-
side of the 50% error bounds, with average annual consumption
around 1,300 kWh/yr in the monitored sample and around
1,000 kWh/yr in EnergyPlus simulations. In general, fan energy
consumption is underestimated for homes with high fan consump-
tion and overestimated for homes with low fan consumption. This
indicates that the factors which describe the high variance in
actual consumption have not been accounted for in the models.

Fig. 6 shows the average monitored and simulated central air
supply fan demand for the 21 homes in which EnergyPlus
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Fig. 6. Average central air supply fan demand for homes where EnergyPlus overestima
demand for a day with negligible heating or cooling energy. (b) Shows average demand
simulated energy consumption was from 0% to 50% more than
actual monitored consumption. The left figure shows average sim-
ulated and monitored demand profiles for a day with negligible
heating or cooling energy. This shows EnergyPlus correctly identi-
fying no significant fan load and very closely matching the moni-
tored fan use on this day in all homes. The right figure shows a
peak cooling day. This shows EnergyPlus simulates fan demand
earlier in the day than in the monitored homes. Peak fan loads
roughly coincide both in timing and in actual kW. Interval data
profiles for homes with >50% error and underestimated fan con-
sumption can be found in Appendix C.

Finally, Fig. 7 shows annual energy consumption errors
of condensing units on the x-axis and supply fans on the y-axis.
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This shows that fan and condenser errors are positively
correlated (r = 0.52), indicating that fan and condenser energy
errors generally track together, and neither is compensating for
the other.

3.4. Baseline model accuracy – non-HVAC energy use

Fig. 8 shows the simulated and actual annual energy consump-
tion of all other end uses in the simulated homes. This includes
interior and exterior lighting, a refrigerator, miscellaneous plug
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Fig. 8. Scatter plot showing simulated non-HVAC energy consumption on the x-axis and
while red diagonals show ±50% error bounds. (For interpretation of the references to co
loads, kitchen appliances, a dishwasher, and washer and dryer.
To properly account for these loads in the monitored data, we
require monitored data for the whole home, the condensing unit,
and the central air fan. This leaves 74 homes of the original 106
with the necessary data for this comparison.

EnergyPlus simulations again overestimate energy consump-
tion for these loads in nearly all included homes. Average simu-
lated consumption is around 8,600 kWh/yr, and monitored
consumption around 5,900 kWh/yr, meaning around 73% of the
whole-home error is due to these other loads.
nsumption (MWh/yr)

5101

measured consumption on the y-axis. The black diagonal shows perfect agreement,
lour in this figure legend, the reader is referred to the web version of this article.)
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This other energy use also contributes to the overestimated
condensing unit energy consumption discussed above. Extra inter-
nal energy use increases the homes’ cooling loads during Austin’s
long cooling season. Because most homes are heated by gas and
Austin’s heating season is short, the corresponding reduction in
heating energy use is minimal.
3.5. Sensitivity analysis

Fig. 9 below shows the change in CVRMSE of whole-home
energy consumption when individual factors are changed from
their actual values as described in Section 2.7. Positive values indi-
cate that CVRMSE increased when a home characteristic was
replaced with a default value.

These results show that the CVRMSE between EnergyPlus sim-
ulations and actual consumption at the whole-home level is most
sensitive to home square footage, condensing unit age and name-
plate efficiency, building shell infiltration, heating and cooling set-
points, and window area. When these factors are changed in
EnergyPlus from their actual value back to the PNNL prototype
default value, CVRMSE changes by upwards of 40% in some homes.

Results are slightly less sensitive to correcting for attic insula-
tion R-value, which change CVRMSE by over 30% in some cases.
Building orientation, ceiling height, window frame material and
number of panes, lighting power density, and exterior construction
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Fig. 9. Histograms showing change in whole-home energy consumption CVRMSE resultin
in CVRMSE, and the y-axis shows the number of homes in each bin.
material change CVRMSE by over 10% each. Finally, changes in
occupancy schedule and number of residents result in a change
in CVRMSE of less than 10% in all cases.

In these figures, a negative change in the error term – indicating
that model accuracy improved when actual values were replaced
with defaults – does not necessarily mean the default value is more
accurate, or EnergyPlus is handling these values incorrectly.
Instead, it reflects the fact that the baseline simulations do not
match metered consumption. Most homes’ total energy consump-
tion is overestimated, so any time these homes have an actual
value replaced with a default that makes the EnergyPlus model
more efficient, the error term will decrease.

In the sensitivity analysis shown in Fig. 9(o), EnergyPlus’s auto-
size method was used to estimate the cooling capacity of each
home’s condensing unit. This provides a convenient and important
measure of a simulated home’s estimated cooling load based on
building characteristics, occupant behaviors, and internal loads.
Fig. 10 shows a scatterplot of these autosized condenser capacities
on the x-axis and the nameplate capacities of the condensers in the
actual homes on the y-axis.

This shows the autosized condenser capacities are nearly all
between 50% and 100% of the installed condenser capacities. This
could indicate that the EnergyPlus calculated cooling load is lower
than the actual cooling load, or the actual condensers could be
oversized by design. Note that installed condenser capacities
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(i) Window area

(k) Occupancy

(m) Lighting

(j) Attic R-value

(l) Residents

(n) Exterior Contruction material

(o) Autosized condenser capacities
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Fig. 10. Scatterplot of autosized condenser capacities on the x-axis and nameplate capacities on the y-axis. The black diagonal shows perfect agreement, while red diagonals
show ±50% error bounds. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 3
Summary of model accuracies in terms of relative annual errors and hourly CVRMSEs.

Relative error (annual) CVRMSE (hourly)

Min (%) Mean (%) Max (%) Min (%) Mean (%) Max (%)

Whole-home <1 56 240 41 104 360
AC condensing unit <1 76 730 62 206 1400
Central air supply fan <1 97 4100 58 207 5700
Other 2 74 250 44 113 270
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follow manufacturer’s nominal sizes that typically specify con-
densers in half-ton increments, while EnergyPlus autosized capac-
ities can be assigned any value. If autosized capacities are rounded
up to the nearest half-ton increment, they more closely match
nameplate capacities. See Appendix B for this figure.

4. Conclusions

A summary of simulation accuracy results, in annual relative
error and hourly CVRMSE terms, is shown in Table 3.

These results show that EnergyPlus simulations of single-family
homes, as has been reported in commercial buildings, do not con-
sistently or accurately predict actual energy consumption at either
the whole-home or device level when specified as described above.
As with any model, the quality of inputs determines the quality of
the result and more comprehensive energy audit records would
allow for more accurate modeling of all systems.

Despite the considerable extent to which the PNNL prototypes
were modified with characteristics of the actual monitored homes,
whole-home annual energy consumption was consistently overes-
timated, in many instances by more than 100%. When accuracy is
measured by annual relative error, some models appear to be well
calibrated as shown in Table 3. But when those same models’ accu-
racies are measured by hourly CVRMSE, none of the models meet
ASHRAE’s tolerance of 30% CVRMSE. Much of this error can be
attributed to the fact that the Pecan Street homes consume far less
electricity than average, and the PNNL prototypes were intended to
model average code-compliant homes. Any field that was not
included in the energy audit records was not changed from the
PNNL default, so the models simulated here still have many char-
acteristics in common with the prototypes.

At the device level, condensing unit energy consumption was
generally overestimated. Central air supply fan energy is fairly
accurately simulated, with the remainder of the whole-home over-
estimate coming from other end uses, including lighting and all
non-HVAC loads. To better understand the source of these errors
and how various home and occupant characteristics affect them,
the sensitivity analysis conducted here identifies the factors that
are most crucial to developing accurate models in the future.

Finally, the modeling of these homes demonstrates the diffi-
culty of generating accurate simulations, even when provided with
considerable building and occupant characteristic data. The rela-
tive inaccuracy of the models developed here goes to show that
many determinants of home energy consumption are not captured
during a traditional energy audit and survey, and many more
appliance stock, appliance use, and occupant behavioral character-
istics are needed to generate accurate residential building
simulations.

5. Policy discussion and recommendations

These results provide additional context for the growing use of
EnergyPlus in single-family homes. Results here, and previous
research in the commercial sector, show that simulations do not
accurately estimate actual energy consumption in occupied build-
ings. Whether these discrepancies between measured energy con-
sumption and simulation results are due to imperfect input data or
EnergyPlus algorithms cannot be determined here. Additional
research using complete, ground-truth input data and detailed
measured end-use data is needed to better understand the sources
of these errors. What can be said is that there are too many vari-
ables affecting energy use in occupied homes that cannot be accu-
rately included in building simulations. Simulation tools do likely
provide a reasonable estimate of as-built building performance
under default operational settings, device stocks, and occupancy
and behavioral assumptions. But these tools should not be used
to estimate or predict actual occupied building energy
consumption.

The DOE Building Energy Codes Program should consider the
inaccuracies seen here and in previous research as their work con-
tinues to use EnergyPlus as a tool for evaluating future energy
codes. The current method of simulating incremental changes to
building codes and estimating energy savings and lifecycle costs
can be a valuable tool. But the fact that simulations typically do
not accurately predict actual energy consumption once homes
are occupied means that these simulations should not be used to
predict actual realized energy consumption or savings in future
homes.

Finally, details of RESNET’s EnergyPlus-based compliance tool
have not yet been released, but it can be assumed that it will
likely simulate a designed homes’ performance over a year, and
compare that to some baseline code-compliant version of the
same home. This would reflect a major transition to a systems-
level approach to code compliance, as any whole-building simula-
tion model would consider interactions between the building
envelope, internal loads, and the heating and cooling systems. If
this is the case, a set of assumptions and standard conditions will
have to be established that fairly value the future occupants’
levels of efficiency, but that also limit the effects of model inaccu-
racies. The results of our sensitivity analysis can serve as a guide
for establishing these baseline states. The most sensitive factors
need to be considered most carefully, as default values and
assumptions do not accurately represent actual homes. Further,
the device-level measures of the accuracy of the 106 models of
Pecan Street homes highlight the fact that far more information
than was described here is necessary to build accurate models.
Whole-building simulation can be a powerful decision-making
tool, but care is needed to ensure that decision-makers are aware
of their limitations, and not let the relative ease of simulating
building energy performance get ahead of the capabilities of the
tool.
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Table A.1
Summary of simulated homes’ participation in Pecan Street programs.

Intervention/program Homes included

Intervention 1 0
Intervention 2 81
Intervention 3 19
Intervention 4 9
Intervention 5 27
Intervention 6 15
Intervention 7 18
Intervention 8 106
Intervention 9 7
Intervention 10 0
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Appendix A. Pecan Street survey, audit, and intervention
summary

Table A.1 shows the participation in Pecan Street programs of
the 106 homes included in final simulations. These programs are
detailed below:

Intervention 1 indicates that the home is located in Texas but is
outside of the Greater Austin area.

Intervention 2 was a study in which energy use in each home in
the study was monitored for one year and then summarized. At the
end of that year, this summary was provided to the homeowner
and another year of data was monitored to determine if energy
use changed.
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Fig. B.2. Average condensing unit demand for homes where EnergyPlus overestimated annual condensing unit energy consumption by <50%. (a) Shows average condensing
unit demand for a day with negligible heating or cooling energy. (b) Shows average condensing unit demand for a peak cooling day.
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Fig. B.1. Scatterplot of autosized condenser capacities rounded up to the nearest half-ton on the x-axis and nameplate capacities on the y-axis. The black diagonal shows
perfect agreement, while red diagonals show ±50% error bounds. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Fig. B.3. Average condensing unit demand for homes where EnergyPlus underestimated annual condensing unit energy consumption. (a) Shows average condensing unit
demand for a day with negligible heating or cooling energy. (b) Shows average condensing unit demand for a peak cooling day.
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Intervention 3 indicates the home was part of a control group
for the CCET trial. This was a study which made home energy
use data available to homeowners via an online portal and estab-
lished an experimental time-of-use pricing scheme.

Intervention 4 indicates that homeowners only had access to
the CCET home energy reporting portal. While these participants
were made aware of how the experimental pricing scheme would
affect them, they did not receive any actual financial incentive.

Intervention 5 indicates that homeowners both had access to
the CCET online energy portal and received financial incentives in
accordance with the experimental pricing scheme established to
reduce peak demand.

Intervention 6 indicates that homeowners in the CCET trial
received text messages asking them to reduce their energy con-
sumption on peak days.

Intervention 7 was similar to Intervention 6, but text messages
provided information on which appliances should be curtailed.
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Fig. C.1. Average central air supply fan demand for homes where EnergyPlus overestim
demand for a day with negligible heating or cooling energy. (b) Shows average demand
Intervention 8 indicates participation in the energy internet
demonstration program. Most of these homes are in Austin’s Muel-
ler neighborhood.

Intervention 9 was a program that delivered new LG washers,
dryers, and some refrigerators to participating homeowners.

Intervention 10 is a program that gives tablets to residents of
low-income apartment complexes to provide access to their online
energy portal.

Appendix B. Additional condensing unit results

See Figs. B.1–B.3.

Appendix C. Additional central air supply fan results

See Figs. C.1–C.3.
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ated annual central air supply fan energy consumption by >50%. (a) Shows average
for a peak cooling day.
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Fig. C.2. Average central air supply fan demand for homes where EnergyPlus underestimated annual central air supply fan energy consumption by <50%. (a) Shows average
demand for a day with negligible heating or cooling energy. (b) Shows average demand for a peak cooling day.
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Fig. C.3. Average central air supply fan demand for homes where EnergyPlus underestimated annual central air supply fan energy consumption by >50%. (a) Shows average
demand for a day with negligible heating or cooling energy. (b) Shows average demand for a peak cooling day.
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